Fixings and Fastenings

Products 10.0
Products 10.1
Products 10.2
Load details for Bolts, Threaded Rods, Threaded Tube 10.3
Basics for heavy duty fixings 10.4
Basics for heavy duty fixings 10.5
Installation instructions Drive Plug AN and Bolt Anchor AN BZ PLUS 10.6
Installation of Resin Anchor System 10.7
Installation Instructions Hollow Core Anchor Bolt 10.8
Fixings and Fastenings

Products

- Bolt Anchor AN BZ PLUS
- Drive Plug AN ES
- Setting Tool for Drive Plug ANT

- Resin Anchor Rod VMZ-A
- Resin Anchor Rod VMU-A

- Resin Injection Cartridge VMZ 345; VMU; VM-K / Perforated Sleeve SH

- Screwbolt MMS-ST
- Screwbolt MMS-PR
- Screwbolt MMS-I

- Hollow Core Anchor AN Easy

- Nail Anchor PN 27
- Setting Tool PN

- Nylon Plug AN
Fixings and Fastenings

Products

<table>
<thead>
<tr>
<th>Rod Coupling AD f/f</th>
<th>Reducer AD f/m</th>
<th>Reducer AD m/f</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Image: Rod Coupling AD f/f]</td>
<td>[Image: Reducer AD f/m]</td>
<td>[Image: Reducer AD m/f]</td>
</tr>
<tr>
<td>IG/IG: round</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Eye Bolt SCR</th>
<th>Flat Leaf Bolt SCR</th>
<th>Link Eye SCB</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Image: Eye Bolt SCR]</td>
<td>[Image: Flat Leaf Bolt SCR]</td>
<td>[Image: Link Eye SCB]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Eye Screw SCR</th>
<th>Twin Holder DHP M8</th>
<th>Threaded Spacer BOL M8</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Image: Eye Screw SCR]</td>
<td>[Image: Twin Holder DHP M8]</td>
<td>[Image: Threaded Spacer BOL M8]</td>
</tr>
<tr>
<td>Eye Screw C RIN C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hexagon Wood Screw SKH</th>
<th>Slotted Screw SCR</th>
<th>Hexagon Bolt SKT</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Image: Hexagon Wood Screw SKH]</td>
<td>[Image: Slotted Screw SCR]</td>
<td>[Image: Hexagon Bolt SKT]</td>
</tr>
</tbody>
</table>
Products

- Hexagon Nut NT
- Flange Nut NT FLA
- Threaded Rod GST
- Threaded Stud GST
- Locking Nut NT G
- Threaded Tube GR
- Grooved Rod GES PNS
- Bolt Screw BSCR with collar
- Hexagon Socket Screw SCR
- Washer US
- Bolt Screw BSCR without collar
- Flange Screw FLA HCP
- Bolt Screw Adapter ANT BIT
Load details for Bolts, Threaded Rods, Threaded Tube

Bolts and Threaded Rods

<table>
<thead>
<tr>
<th>Thread</th>
<th>Permissible Load (tension) [kN]</th>
<th>Torque [Nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>FK 4.8</td>
<td>8.0</td>
<td>12</td>
</tr>
<tr>
<td>FK 8.8</td>
<td>15.6</td>
<td>25</td>
</tr>
<tr>
<td>FK 4.8</td>
<td>12.5</td>
<td>23</td>
</tr>
<tr>
<td>FK 8.8</td>
<td>35.9</td>
<td>40</td>
</tr>
<tr>
<td>VA 4.8</td>
<td>18.1</td>
<td>40</td>
</tr>
<tr>
<td>VA 8.8</td>
<td>33.8</td>
<td>85</td>
</tr>
</tbody>
</table>

FK = Grade

μges = 0.14

σadm ≤ 215 N/mm² (FK 4.8)

fadm ≤ 3 mm

Threaded Tube

<table>
<thead>
<tr>
<th>Thread</th>
<th>Permissible Load (tension) [kN]</th>
<th>Permissible Bending Moment [Nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>G 1/2</td>
<td>18.0</td>
<td>53</td>
</tr>
<tr>
<td>G 3/4</td>
<td>28.3</td>
<td>138</td>
</tr>
<tr>
<td>G 1</td>
<td>41.4</td>
<td>277</td>
</tr>
</tbody>
</table>

Thread acc. to DIN ISO 228

σadm ≤ 160 N/mm²

fadm ≤ 3 mm

Anchor loads have to be calculated separately.
Fixings and Fastenings

Basics for heavy duty fixings

Tensile zone (cracked concrete)

The crack width usually is approx. 0.3 … 0.5 mm.

Tensile stress can cause cracks in all concrete parts of a building.

Areas particularly affected by tensile stress include the underside of slabs, and walls / columns under bending stresses.

Unless proven as a compression zone, all areas of concrete into which fixings and anchors are installed must be considered as cracked concrete.

Approvals
Anchorages must be dimensioned and calculated according to European Approvals (ETA). The guidelines for these approvals are known as ETAGs and often statements on the characteristic load resistance of fixings to cracked concrete in the case of fire, can also be found here.

Function of Fixings

- Friction by expansion
- Form Locking

Anchors in cracked concrete have additional security through;

- automatic secondary expansion in case of crack expansion
- form locking by an undercut drill hole

Types of installation

- Push-through installation (Bolt Anchor)
- Pre-positioned installation (internal thread anchor)
- Stand-off installation (Bolt Anchor)
Basics for heavy duty fixings

Axial spacing, edge distance, pull-out cone

- **s** = Axial spacing > red s = reduced axial spacing (in case of partial overlap of theoretical pull-out cones)
- **c** = Edge distance
- **h** = Component thickness
- **F_Z** = permissible loading (also N = normal force)

In the event of "concrete cone failure", a symmetrical cone of the concrete breaks away. The anchor depth h_v is therefore a determining factor in the load capacity.

Types of loading

- **tensile load**
- **shear load**
- **diagonal load**
- **bending moment**

Anchors for multiple use in non-structural applications

According to ETAG - part 6, a multiple fixing is exisitant when a pipeline has at least 3 fixings and the loading per point is max. 2 kN.

ETAG = Guide line for European Technical Approvals (ETA)

Basic rules for anchorages

1. **Load capacity:**
 - Anchor type, base material strength and drill hole positions typically determine the load resistance of the anchorage.

2. **Concrete tensile area:**
 - The load values often refer to the anchor performance in a concrete base material of class C20/25 (formerly B25).

3. **Corrosion protection:**
 - Electro-galvanised anchors are typically only used only for dry indoor environments.
 - For damp environments and outdoors, anchors hot dip galvanised or made of stainless steel are typically specified.

4. **Fire protection:**
 - According to TRGI, the anchors for gas pipes must be manufactured from non-combustible steel; equally for fire protection of fixings according to comments from MLAR.
Installation instructions Drive Plug AN and Bolt Anchor AN BZ PLUS

Drive Plug AN ES

Setting Tool for Drive Plug ANT for secure installation.

Independent of small diameter tolerances of the drill hole, the "intelligent" expanding cone simplifies installation by always developing the right pressure.

Bolt Anchor AN BZ PLUS

Identical drill hole diameter to thread size

European Approvals (ETA) for multiple fixings used in non-structural systems in cracked concrete.

Load capacity is reduced in considering performance under exposure to fire.

Advantages
- no special drill bit
- low impact energy when setting fixing
- suitable for pre-positioned installation.

Installation
1) Drill hole
2) Clean out the drilled hole
3) Set Drive Plug AN ES with Setting Tool ANT
4) Place installation item and connect to Drive Plug AN ES with correct length of threaded bolt or stud, and tightening torque.

d = Thickness of components
da = Thickness of attachment parts
hv = Anchor depth
M_0 = specified tightening torque
t = Depth of drill hole
Installation of Resin Anchor System

Injection system VMZ

Resin and hardener are mixed together in the mixer nozzle during dispensing from the cartridge. From the bottom depth of the drill hole, inject the resin to fill a minimum of 2/3rds of the hole.

Injection System VMU

Resin anchor stud VMU and perforated sleeve SH to be used in hollow or perforated brick

Suitable for brickwork (solid brick, sand-lime brick) and in combination with the Perforated Sleeve SH for:
- vertically perforated brick
- perforated sand-lime brick
- hollow brick made of gas concrete and concrete.

European Approvals (ETA) for multiple fixings used in non-structural systems in cracked concrete.

Load capacity is reduced in considering performance under exposure to fire.

Advantages
- no special drill bit
- unabated carrying capacity in wet drill holes
- processing from M12 on, even in water-filled drill hole
- processing temperature up to -5°C
- High load capacity with small edge distances and axial spacings

Installation

1) Drill hole
2) Brush out debris from the drilled hole
3) Blow out dust from the drilled hole
4) Fill the injection resin to the drilled hole
5) Screw in the anchor rod to the correct depth within the resin-filled hole
6) Allow resin to cure for the correct time (according to ambient installation temperature on site)
7) Affix connecting part and tighten down nut to specified torque.

European Approval (ETA) for single fixation in uncracked concrete, general building inspection approval for anchorage in brickwork

Advantages
- no special drill bit
- Fixings possible to wet drill holes
- High load capacity with relatively small edge distances and axial spacings.

Installation

1) Drill hole
2) Brush out debris from the drilled hole
3) Blow out dust from the drilled hole
4) Install the perforated sleeve to the drilled hole (recommended for perforated brick)
5) Fill the injection resin to the perforated sleeve (100% fill)
6) Screw in the anchor rod to the correct depth within the resin-filled sleeve
7) Allow resin to cure for the correct time (according to ambient installation temperature on site)
8) Affix connecting part and tighten down nut to specified torque.
Installation Instructions Hollow Core Anchor Bolt

Hollow core anchor AN Easy

The anchor could be used, even if the bracing area is not inside the hollow chamber.

When tightening the screw, the conus is released from the anchor sleeve, roped in and tensed up.

\[B_h \leq 4.2 \times B_{st} \]

Screwbolt MMS-ST

Suitable for installation to concrete and masonry (sand-lime brick, solid brick, clinker and natural stone)

Combined internal thread socket M8/M10

Screwbolt MMS-PR

Ideal for the installation of Channel 27 to concrete and masonry Torx®-Connection T30 for a safe transfer of high torque during installation.

The screwbolt may be adjusted and is also removable.

European approval (ETA) for single fixation in cracked concrete for size 10 from 65 mm anchorage depth.

DIBt-Approval for the installation of lightweight suspended ceilings and comparable systems in cracker concrete for size 7.5.

Load capacity is reduced in considering performance under exposure to fire.

Advantages

- minimal drilling effort (small diameter and short embedment depths)
- small edge and axial spacings possible
- removable fixing

Installation

1) Drill the hole
2) Clean the drilled hole
3) Install with screw gun or impact driver.

General building inspection approval of the DIBt for single fixation in prestressed concrete-hollow ceilings with stability \(\geq C \ 45/55 \).

Considering reduced resilience suitable for exposure to fire.

Advantages

- no special drill needed
- suitable for the assembly of standard bolts and threaded rods

Installation

1) Drill the bore hole
2) Drive in anchor flushy
3) After tightening to specified torque, directly resilient.