

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-10/0257 of 23 November 2021

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

SIKLA Drop-in Anchor AN / AN ES

Mechanical fastener for use in concrete

Sikla Holding GmbH Kornstraße 4 4614 MARCHTRENK ÖSTERREICH

Sikla Herstellwerk 1

16 pages including 3 annexes which form an integral part of this assessment

EAD 330232-01-0601, Edition 05/2021

ETA-10/0257 issued on 2 February 2016

European Technical Assessment ETA-10/0257

Page 2 of 16 | 23 November 2021

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-10/0257

Page 3 of 16 | 23 November 2021

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The SIKLA Drop-in Anchor AN / AN ES is a fastener made of galvanized steel, stainless steel or high corrosion resistant steel which is placed into a drilled hole and anchored by deformation-controlled expansion.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading) Method A	See Annex B2, C1 to C2
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C3 to C4
Displacements	See Annex C5
Characteristic resistance and displacements for seismic performance category C1 and C2	No performance assessed

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	No performance assessed

3.3 Aspects of durability linked with the Basic Works Requirements

Essential characteristic	Performance
Durability	See Annex B1

European Technical Assessment ETA-10/0257

Page 4 of 16 | 23 November 2021

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330232-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 23 November 2021 by Deutsches Institut für Bautechnik

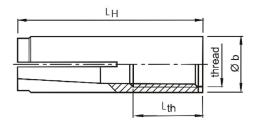
Dipl.-Ing. Beatrix Wittstock Head of Section beglaubigt: Baderschneider

SIKLA Drop-in Anchor AN / AN ES Anchor sizes and variations Drop-in Anchor AN (without shoulder) Drop-in Anchor AN / ES (with shoulder) 0 0 AN ES M6x30 AN M6x30 AN M8x30 AN ES M8x30 **(** 0 AN M8x40 AN ES M8x40 AN ES M10x30 AN M10x40 (zinc plated) AN M12x50 AN ES M10x40 AN M12x80 AN ES M12x50 AN M16x65 AN ES M12x80 AN M16x80 AN ES M16x65 AN M20x80 AN ES M16x80 Installation situation SIKLA Drop-in Anchor AN / AN ES Annex A1 **Product description** Anchor sizes and variations / Installation situation

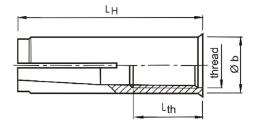
Table A1: Material

Part	Designation	Steel, zinc plated	High corrosion resistant steel HCR				
1	Anchor sleeve	Cold formed or machining steel, galvanized, EN ISO 4042:2018	Stainless steel (e.g. 1.4401, 1.4404, 1.4571) EN 10088:2014, EN ISO 3506:2020	Stainless steel, 1.4529, 1.4565, EN 10088:2014, EN ISO 3506:2020			
2	Cone	Cold formed or machining steel	Stainless steel (e.g. 1.4401, 1.4404, 1.4571) EN 10088:2014				

Requirements on the fastening screw or the threaded rod and nut according to the engineering documents:


- Minimum screw-in depth L_{sdmin} see Table B1
- The length of screw or the threaded rod shall be determined depending on the thickness of fixture t_{fix}, available thread length L_{th} (= maximum screw-in depth) and the minimum screw-in depth L_{sdmin}.
- A₅ > 8 % Ductility
- Materials
 - Steel, zinc plated, property class 4.6 / 4.8 / 5.6 / 5.8 or 8.8 according to EN ISO 898-1:2013 or EN ISO 898-2:2012
 - Stainless steel A4 or high corrosion resistant steel HCR, property class 70 or 80 according to EN ISO 3506:2020

SIKLA Drop-in Anchor AN / AN ES	
Product description Materials / Requirements	Annex A2



Anchor sleeve

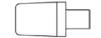
Anchor version without shoulder (AN)

Anchor version with shoulder (AN ES)

Marking: see Table A2

identifying mark of manufacturing plant
 anchor identity (version without shoulder)
 anchor identity (version with shoulder)

M8 size of thread40 anchorage depth


additional marking

A4 stainless steel

HCR high corrosion resistant steel

Cone

M6x30 and M10x30

remaining sizes

Table A2: Dimensions and marking

Table A2. Dimensions and marking											
Anchor	And	hor s	leeve		Marking		Marking				
size	thread	thread Ø b L _H L _{th}		Version AN (without sleeve)	Version AN ES (with sleeve)	alternative	Cone				
M6x30	M6	8	30	13		⇔ ES M6x30					
M8x30	M8	10	30	13		⇔ ES M8x30					
M8x40	M8	10	40	20		⇔ ES M8x40					
M10x30	M10	12	30	12	-	⇔ ES M10x30					
M10x40	M10	12	40	15		⇔ ES M10x40					
M12x50	M12	15	50	18		⇔ ES M12x50					
M12x80	M12	15	80	45		⇔ ES M12x80					
M16x65	M16	19,7	65	23		⇔ ES M16x65					
M16x80	M16	19,7	80	38		⇔ ES M16x80					
M20x80	M20	24,7	80	34		-					

Dimensions in mm

SIKLA Drop-in Anchor AN / AN ES

Product description

Dimensions and marking

Annex A3

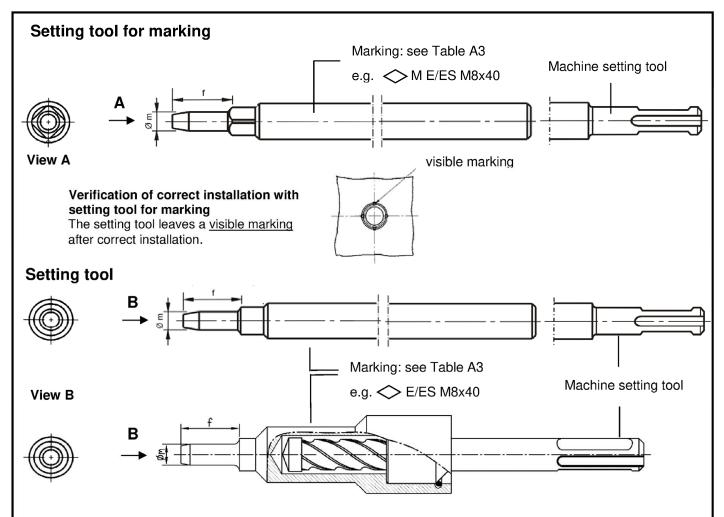


Table A3: Dimensions and marking of setting tools

Anchor	Øm	f	Setting tool for	or marking	Settin	g tool
size			Marking	alternative	Marking	alternative
M6x30	4,9	17	⇔ M E/ES M6x30			⇒ E M6
M8x30	6,4	18	⇔ M E/ES M8x30			⇒ E M8
M8x40	6,4	28				
M10x30	8,0	18			⇒ ES M10x30	
M10x40	8,0	24				⇒ E M10
M12x50	10,0	30		→ M E M12		⇒ E M12
M12x80	10,0	60				
M16x65	13,5	36				⇒ E M16
M16x80	13,5	51				⇒ E M16x80
M20x80	16,5	50			⇒ E M20x80	⇒ E M20

Dimensions in mm

SIKLA Drop-in	Anchor	AN /	AN ES
---------------	--------	------	-------

Product description

Setting tools / Dimensions and marking

Annex A4

Specifications of intended use

Anchorages subject to:

Static and quasi-static loads

Base materials:

- Compacted, reinforced or unreinforced normal weight concrete, without fibres according to EN 206:2013 + A1:2016
- Uncracked concrete
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016

Use conditions (Environmental conditions):

- · Structures subject to dry internal conditions (all materials)
- For all other conditions applies:
 Use according to EN 1993-1-4:2015 corresponding to corrosion resistance class CRC according to Annex A2, Table A1:
 - Stainless steel A4: CRC III
 - High corrosion resistant steel HCR: CRC V
- Anchor types M6x30 A4 and M8x30 A4 only for dry internal exposure

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to
 reinforcement or to supports, etc.).
- The strength class and the length of the fastening screw or threaded rod shall be defined by the designing engineer
- Design of fastenings according EN 1992-4:2018 (and TR 055, Edition February 2018, if necessary)
- Anchor sizes M6x30, M8x30 and M10x30 for statically indeterminate structural components only, when in case of failure, the load can be distributed to other fasteners.

Installation:

- Anchor installation in accordance with the manufacturer's specifications and drawings and using the appropriate tools
- Drill hole by hammer drilling or vacuum drilling

SIKLA Drop-in Anchor AN / AN ES	
Intended use Specifications	Annex B1

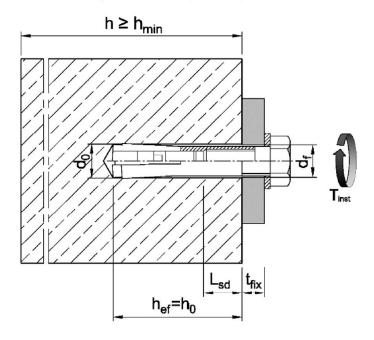

7112280 21 8 06 01-285/21

Table B1: Installation parameters

Anchor size			M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M12x80	M16x65	M16x80	M20x80
Depth of drill hole	h ₀ =	[mm]	30	30	40	30	40	50	80	65	80	80
Drill hole diameter	d ₀ =	[mm]	8	10	10	12	12	15	15	20	20	25
Cutting diameter of drill bit	$d_{cut} \leq$	[mm]	8,45	10,45	10,45	12,5	12,5	15,5	15,5	20,55	20,55	25,55
Max. installation torque 1)	$T_{inst} \leq$	[Nm]	4	8	8	15	15	35	35	60	60	120
Diameter of clearance hole in the fixture	$d_{f} \leq$	[mm]	7	9	9	12	12	14	14	18	18	22
Thread length	L_{th}	[mm]	13	13	20	12	15	18	45	23	38	34
Minimum screw-in depth	L_{sdmin}	[mm]	7	9	9	10	11	13	13	18	18	22
Steel, zinc plated												
Minimum thickness of member	h _{min}	[mm]	100	100	100	120	120	130	130	160	160	200
Minimum spacing	Smin	[mm]	55	60	80	100	100	120	120	150	150	160
Minimum edge distance	Cmin	[mm]	95	95	95	115	135	165	165	200	200	260
Stainless steel A4, HCR												
Minimum thickness of member	h _{min}	[mm]	100	100	100	-	130	140	140	160	160	250
Minimum spacing	Smin	[mm]	50	60	80	-	100	120	120	150	150	160
Minimum edge distance	Cmin	[mm]	80	95	95	-	135	165	165	200	200	260

¹⁾ If the screw or threaded rod is otherwise secured against unscrewing, the torque can be omitted

SIKLA Drop-in Anchor AN / AN ES	
Intended use Installation parameters	Annex B2

Installation instructions Drill hole perpendicular to concrete surface. Using vacuum drill bit proceed with step 3. Blow out dust. Alternatively, vacuum clean down to the bottom of the 2 hole. Drive in anchor. 3 Drive in cone by using setting tool. 4 Shoulder of setting tool must fit on anchor rim. 5 $\mathsf{T}_{\mathsf{inst}}$ Turn in screw or threaded rod with nut, observe minimum screw-in depth (see Annex B2). 6 Apply installation torque Tinst.

SIKLA Drop-in Anchor AN / AN ES	
Intended use Installation instructions	Annex B3

Anchor size					M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M12x80	M16x65 M16x80	M20x80	
Installation fact	or		γinst	[-]		1,2								
Steel failure														
		4.6			8,0	14	1,6	23	3,2	33	3,7	62,8	98,0	
	lass	4.8	4.8 5.6 N _{Rk,s}		8,0	14	1,6	18,0	20,2	33	5,7	62,8	98,0	
Characteristic resistance	erty c	5.6		[kN]	10,0	18	3,3	18,0	20,2	42	2,1	78,3	122,4	
100.0141100	istic 2.6 5.6 5.8 8.8 8.8			10,0	17,6	18,3	18,0	20,2	40,2	42,1	67,1	106,4		
		8.8			15,0	17,6	19,9	18,0	20,2	40,2	43,0	67,1	106,4	
	,,	4.6							2,0					
class	class	5.6			2,0 1,5						2	2,0		
Partial factor Partial factor 4.8 5.8 8.8			γMs ¹⁾	[-]	1,5								,6	
Pull-out failure)													
Characteristic r concrete C20/2	aracteristic resistance in				8,1	8,1	9,0	8,1	12,4	17,4	17,4	25,8	35,2	
Increasing factor $N_{Rk,p} = \psi_c \cdot N_{Rk,p}$		/25)	ψс	[-]	$\left(\frac{f_{ck}}{20}\right)$	0,5	$\left(\frac{f_{ck}}{20}\right)^{0,3}$			$\left(\frac{f_{ck}}{20}\right)$	17.4 17.4 25.8 35 $\left(\frac{f_{ck}}{20}\right)^{0.5}$			
Splitting														
Characteristic reconcrete C20/2		ince in	√ ⁰ Rk,sp	[kN]	min(N _{Rk,p} ;N ⁰ _{Rk,c})									
Characteristic e distance	edge		C _{cr,sp}	[mm]	95	95	95	115	135	16	§5	200	260	
Characteristic s	pacin	g	S _{cr,sp}	[mm]					$2 \cdot c_{\text{cr,sp}}$					
Concrete cone	failui	re e												
Effective ancho depth	rage		h _{ef}	[mm]	30	30	40	30	40	50	80	65 80 ²⁾	80	
Characteristic e distance	edge		C _{cr,N}	[mm]					1,5 h _{ef}					
Characteristic s	al factor $\frac{\frac{4.6}{5.6}}{\frac{4.8}{000}} = \frac{\frac{4.6}{5.6}}{\frac{4.8}{8.8}}$ out failure acteristic resistance in rete C20/25 asing factor $= \psi_c \cdot N_{Rk,p}$ (C20/25) ting acteristic resistance in rete C20/25 acteristic resistance in rete C20/25 acteristic resistance in rete C20/25 acteristic spacing $N^0_{Rk,sp}$ acteristic spacing $N^0_{Rk,sp}$ acteristic spacing $N^0_{Rk,sp}$ rete cone failure tive anchorage $N^0_{Rk,sp}$ $N^0_{Rk,sp}$ acteristic edge $N^0_{Rk,sp}$ N			[mm]					$2 \cdot c_{\text{cr},N}$					
Factor uncrac	ked c	oncrete	k _{ucr,N}	[-]					11,0					
1.0000														

 $^{^{1)}\}mbox{ In absence of other national regulations}$ $^{2)}\mbox{ For M16x80}$

cracked concrete | k_{cr,N} | [-]

SIKLA Drop-in Anchor AN / AN ES	
Performance Characteristic values for tension loads, zinc plated steel	Annex C1

No performance assessed

Table C2: Characteristic values for tension loads, stainless steel A4, HCR

							-	M12x50	M16x65		
	Anchor size			M6x30	M8x30	M8x40	M10x40	M12x80	M16x80	M20x80	
Installation	factor	γinst	[-]				1,0				
Steel failu	re										
Characteris (property c	stic resistance class 70)	$N_{Rk,s}$	[kN]	14,1	23,3		29,4	50,2	83,8	133,0	
Characteris (property c	stic resistance class 80)	$N_{Rk,s}$	[kN]	17,5	23,3		29,4	50,2	83,8	133,0	
Partial fact	or	$\gamma \text{Ms}^{1)}$	[-]				1,87				
Pull-out fa	ilure										
Characteris concrete C	stic resistance in 20/25	$N_{Rk,p}$	[kN]	8,1	8,1	11,0	12,4	17,4	25,8	35,2	
Increasing	Increasing factor ψc [-			$\left(\frac{f_{ck}}{20}\right)^{0,5}$ $\left(\frac{f_{ck}}{20}\right)^{0,3}$			$\left(\frac{f_{ck}}{20}\right)^{0,5}$				
Splitting fa	ailure										
Characteris concrete C	stic resistance in 20/25	N^0 Rk,sp	[kN]	min (N _{Rk,p} ; N ⁰ _{Rk,c})							
Edge dista	nce	C cr,sp	[mm]	80	95	95	135	165	200	260	
Spacing		S cr,sp	[mm]	2 · C _{Cr,sp}							
Concrete of	cone failure										
Effective a	Effective anchorage depth hef				30	40	40	50 80 ²⁾	65 80 ²⁾	80	
Edge dista	1,5 h _{ef}										
Spacing		Scr,N	[mm]	2 · C _{cr,N}							
Factor	uncracked concrete	K _{ucr,N}	[-]				11,0				
i acioi	cracked concrete	k _{cr,N}	k _{cr,N} [-] No performance assessed								

 $^{^{\}rm 1)}$ In absence of other national regulations $^{\rm 2)}$ For M12x80 and M16x80

SIKLA Drop-in Anchor AN / AN ES	
Performance Characteristic values for tension loads, stainless steel A4, HCR	Annex C2

Table C3: Characteristic values for shear loads , zinc plated steel
--

Table C3: Cr	iaraciei	ISUC V	aiues	101 511	ear 10a	ius, zii	ic plate	su siee	:1					
Anchor size				M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M12x80	M16x65 M16x80	M20x80		
Steel failure wi	ithout lev	er arm												
	ω 4.6			4,0	7,3		11,6	9,6	16,8		31,3	49,0		
	8.4 <u>8</u>	4.8		4,0	4,0 7,3		10,1	10,1	16,9		31,3	49,0		
Characteristic resistance	broperty class 8.7 8.8 8	$V^0_{Rk,s}$	[kN]	5,0	9	9,1	10,1	9,6	2	1,1	39,2	61,2		
	ල් 5.8 ල් —			5,0	6	5,9	10,1	7,2	19,4	21,1	33,5	53,2		
	8.8			5,0	6,9		10,1	7,2	19,4 21,5		33,5	53,2		
	sel 5.6 5.6				4.07		1,25	1,67	'	4.07				
Partial factor	6.5 class	an. 1)	[-]		1,67					1,67				
Partial factor $\frac{1}{2}$ $\frac{4.8}{60}$ $\frac{7 \text{Ms}^{1)}}{5.8}$ [-			ניז				1,25				1,33			
Duktilitätsfaktor		k ₇	[-]	1,0										
Steel failure wi	ith lever a	arm												
4				6,1 15				30		52	133	259		
Characteristic	sse 4.8	_	[Nm]	,							100			
bending resistance	tic $\frac{8}{5.6}$ $\frac{4.8}{5.8}$ $\frac{1}{5.8}$ $\frac{1}{5.8}$ $\frac{1}{5.8}$ $\frac{1}{5.8}$	M ⁰ Rk,s		7,6	7,6 19		3	37	65		166	324		
	g 8.8			12	2 30		59	60	105		266	519		
	sel 2.6 5.6							1,67	7					
Partial factor	broperty class 8.8 8.8	γMs ¹⁾	[-]	1,25										
Factor of ductili	ty	k ₇	[-]					1,0						
Concrete pry-c	out failure)												
Pry-out factor	[-]			1,0			1,5		2,0					
Concrete edge	failure													
Effective length fastener in shea		I _f	[mm]	30	30	40	30	40	50	80	65 80 ²⁾	80		
Outside diamete fastener	er of	d_{nom}	[mm]	8	1	0	1	2	15		20	25		

¹⁾ In absence of other national regulations

²⁾ For M16x80

SIKLA Drop-in Anchor AN / AN ES	
Performance Characteristic values for shear loads, zinc plated steel	Annex C3

Table C4: Characteristic values for shear loads, stainless steel A4, HCR

Anchor size			M6x30	M8x30	M8x40	M10x40	M12x50	M12x80	M16x65	M16x80	M20x8			
Steel failure without lever a	m													
Characteristic resistance (property class 70)	$V^0_{Rk,s}$	[kN]	7,0	10),6	13,4	25	5,1	41	,9	66,5			
Characteristic resistance (property class 80)	$V^0_{Rk,s}$	[kN]	8,7	10	10,6 13,4 25,1 41,9		,9	66,5						
Partial factor	$\gamma \text{Ms}^{1)}$	[-]					1,56			•				
Factor of ductility	k ₇	[-]					1,0							
Steel failure with lever arm														
Characteristic bending resistance (property class 70)	M ⁰ Rk,s	[Nm]	11	2	6	52	9	2	233		454			
Partial factor	γMs ¹⁾	[-]				1,	56							
Characteristic bending resistance (property class 80)	M ⁰ Rk,s	[Nm]	12	3	0	60	10	05	26	66	519			
Partial factor	γ Ms $^{1)}$	[-]					1,33							
Factor of ductility	k ₇	[-]					1,0							
Concrete pry-out failure														
Pry-out factor	k ₈	[-]	1,0		1	,7			2	,0				
Concrete edge failure														
Effective length of fastener in shear loading	lf	[mm]	30	30	40	40	50	80	65	80	80			
Outside diameter of fastener	d _{nom}	[mm]	8	1	0	12	1	5	2	:0	25			

¹⁾ In absence of other national regulations

SIKLA Drop-in Anchor AN / AN ES	
Performance Characteristic values for shear loads, stainless steel A4, HCR	Annex C4

Table C5: Displacements under tension loads

Anchor size	M6x30	M8x30	M8x40	M10x30	M10x40	M12x50 M12x80	M16x65 M16x80	M20x80				
Steel, zinc plated												
Tension load in uncracked concrete	N	[kN]	3	3	3,6	3,3	4,8	6,4	10	14,8		
Dianlacements	δηο	[mm]	0,24									
Displacements	$\delta_{N\infty}$	[mm]	[mm] 0,36									
Stainless steel A4 / HCR												
Tension load in uncracked concrete	N	[kN]	4	4	4,3	_ 1)	6,1	8,5	12,6	17,2		
Dianlacomenta	δ_{N0}	[mm]	0,12									
Displacements	$\delta_{N\infty}$	[mm]		0,24								

¹⁾ Anchor version is not part of the ETA

Table C6: Displacements under shear loads

Anchor size	M6x30	M8x30	M8x40	M10x30	M10x40	M12x50 M12x80	M16x65 M16x80	M20x80		
Steel, zinc plated										
Shear load in uncracked concrete	٧	[kN]	2	4	4	5,7	4,0	11,3	18,8	32,2
Dianlacemente	δ_{V0}	[mm]	0,9	0,9	1,0	1,5	0,6	1,2	1,2	1,6
Displacements	δν∞	[mm]	1,3	1,3	1,5	2,3	0,9	1,9	1,9	2,4
Stainless steel A4 / HCR										
Shear load in uncracked concrete	V	[kN]	3,5	5,2	5,2	_ 1)	6,5	11,5	19,2	30,4
Dianlacements	δνο	[mm]	1,9	1,1	0,7	_ 1)	1,0	1,7	2,4	2,6
Displacements	δγ∞	[mm]	2,8	1,6	1,0	_ 1)	1,5	2,6	3,6	3,8

¹⁾ Anchor version is not part of the ETA

SIKLA Drop-in Anchor AN / AN ES Performance Displacements Annex C5