

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-10/0260 of 26 November 2021

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

SIKLA Injection System VMZ

Bonded fastener for use in concrete

Sikla Holding GmbH Kornstraße 4 4614 MARCHTRENK ÖSTERREICH

Sikla Herstellwerk 1, Sikla Herstellwerk 3

32 pages including 3 annexes which form an integral part of this assessment

EAD 330499-01-0601, Edition 04/2020

ETA-10/0260 issued on 4 December 2017

European Technical Assessment ETA-10/0260

Page 2 of 32 | 26 November 2021

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z113317.21 8.06.01-289/21

European Technical Assessment ETA-10/0260

English translation prepared by DIBt

Page 3 of 32 | 26 November 2021

Specific Part

1 Technical description of the product

The SIKLA Injection System VMZ is a torque controlled bonded anchor consisting of a cartridge with injection mortar VMZ or VMZ Express and an anchor rod with expansion cones and external connection thread (type VMZ-A) or with internal connection thread (type VMZ-IG).

The load transfer is realised by mechanical interlock of several cones in the bonding mortar and then via a combination of bonding and friction forces in the anchorage ground (concrete).

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C1 – C3, C10, B5 – B6
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C4 – C5, C11
Displacements under short-term and long-term loading	See Annex C8 – C9, C11
Characteristic resistance and displacements for seismic performance categories C1 and C2	See Annex C6 – C9

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

Z113317.21 8.06.01-289/21

European Technical Assessment ETA-10/0260

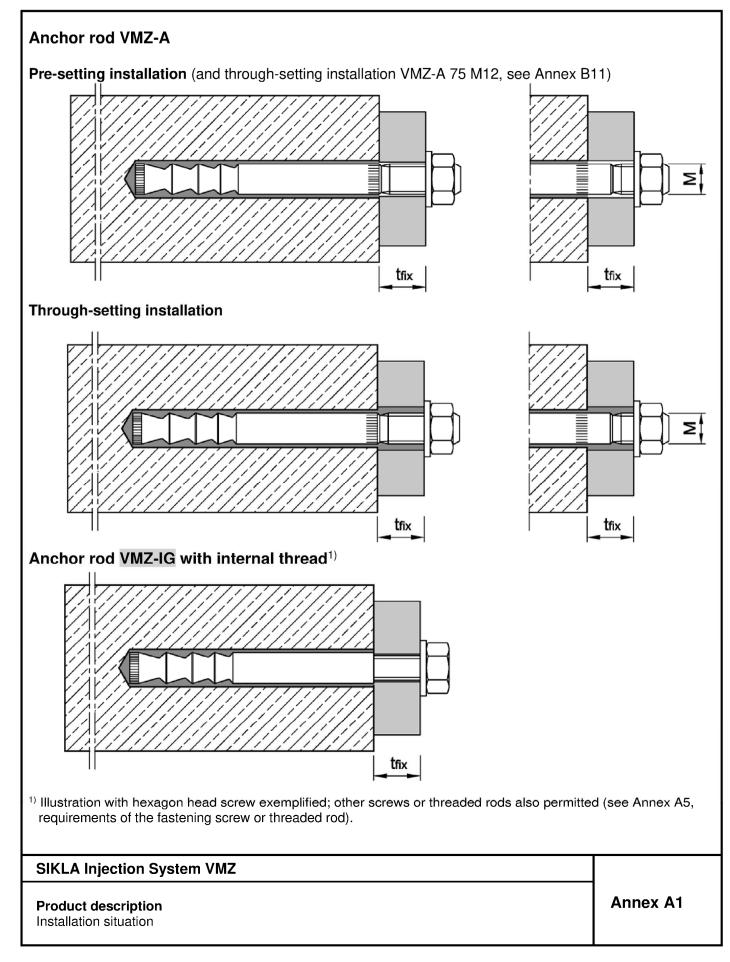
Page 4 of 32 | 26 November 2021

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with EAD 330499-01-0601 the applicable European legal act is: [96/582/EC] The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 26 November 2021 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:*Baderschneider

Z113317.21 8.06.01-289/21

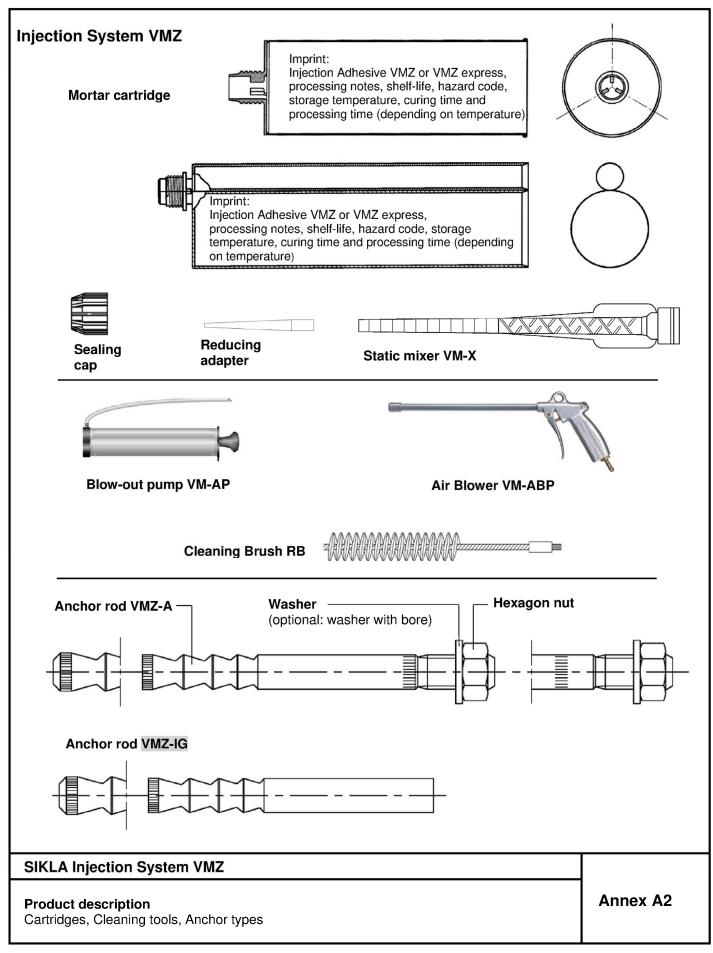
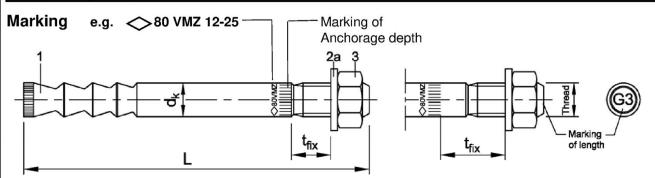



Table A1: Materials VMZ-A

			Steel, zinc plated				
Part	Designation	galvanised ≥ 5µm	hot-dip galvanised ≥ 40µm (50µm in average)	sherardized ≥ 45µm	Stainless steel A4 (CRC III)	High corrosion resistant steel HCR (CRC V)	
		Steel a	acc. to EN ISO 683	3-1:2018	Stainless steel, 1.4401, 1.4404,	High corrosion resistant steel	
1	Anchor rod	galvanised and coated	hot-dip galvanised and coated	sherardized and coated	1.4571, EN 10088:2014, coated	1.4529, 1.4565 EN 10088:2014, coated	
2a	Washer		.		Stainless steel,	High corrosion resistant steel	
2b	Washer with bore		Steel, zinc plated		EN 10088:2014	1.4529, 1.4565 EN 10088:2014	
		Property cla	ss 8 acc. to EN IS	O 898-2:2012	EN ISO 3506-2: 2020, A4-70,	EN ISO 3506-2:2020, Property class 70,	
3	Hexagon nut	galvanised	hot-dip galvanised	sherardized or hot-dip galvanised	A4-80 1.4401, 1.4571 EN 10088:2014	high corrosion resistant steel 1.4529, 1.4565 EN 10088:2014	
4	Mortar cartridge	Vinylester resir	n, styrene free, mixing ratio 1:10				

identifying mark of manufacturing plant

80 anchorage depthVMZ fastener identity12 size of thread

25 maximum thickness of fixture t_{fix} (when using washer 2a)

A4 additional marking of stainless steel

HCR additional marking of high corrosion resistant steel

Marking of length		В	С	D	Е	F	G	Н	- 1	J	K	L	М	N
Length of	min ≥	50,8	63,5	76,2	88,9	101,6	114,3	127,0	139,7	152,4	165,1	177,8	190,5	203,2
anchor	max <	63,5	76,2	88,9	101,6	114,3	127,0	139,7	152,4	165,1	177,8	190,5	203,2	215,9

Marking of le	ngth	0	Р	Q	R	S	Т	U	٧	W	Х	Υ	Z	>Z
Length of	min ≥	215,9	228,6	241,3	254,0	279,4	304,8	330,2	355,6	381,0	406,4	431,8	457,2	482,6
anchor	max <	228,6	241,3	254,0	279,4	304,8	330,2	355,6	381,0	406,4	431,8	457,2	482,6	

SIKLA Injection System VMZ

Product description

VMZ-A: Materials, Marking, Marking of length

Annex A3

Table A2: Dimensions of anchor rod, VMZ-A M8 - M12

	Anchor size VMZ-A		40 M8	50 M8	60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12		
Ĺ	Additional marking				1	2	1	2	1	2	3	4	5	6	7
	Threac			Thread	M	18	M	M10 M12							
		. od	Number o	f cones	2	3	3	3	3	3	4	4	6	6	6
	1			dk =	8,0	8,0	9,7	9,7	10,7	12,5	12,5	12,5	12,5	12,5	12,5
		Anchor	L (with wa	ength L sher 2a)	52+t _{fix}	63+t _{fix}	75+t _{fix}	90+t _{fix}	95+t _{fix}	90+t _{fix}	100 +t _{fix}	115 +t _{fix}	120 +t _{fix}	130 +t _{fix}	145 +t _{fix}
L			Reduct (with washer with	tion t _{fix} 1) bore 2b)	3,4	3,4	3	3	2,5	2,5	2,5	2,5	2,5	2,5	2,5
	3	Hexa	agon nut	SW	13	13	17	17	19	19	19	19	19	19	19

¹⁾ When using washer with bore (2b) the thickness of fixture is reduced by the specified value.

Dimensions in mm

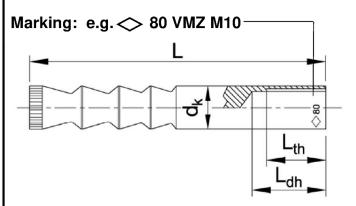
Table A3: Dimensions of anchor rod, VMZ-A M16 - M24

A	Anchor size V		90 M16	105 M16	125 M16	145 M16	160 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)
А	dditional	1	2	3	4	5	1	2	3	1	2	3	
		Thread			M16				M20			M24	
	rod	Number of cones	3	4	6	6	6	3	6	6	6	6	6
1	lor rc	d _k =	16,5	16,5	16,5	16,5	16,5	19,7	22,0	22,0	24,0	24,0	24,0
	1 COLUMN Length L (with washer 2a)		114 +t _{fix}	129 +t _{fix}	150 +t _{fix}	170 +t _{fix}	185 +t _{fix}	143 +t _{fix}	203 +t _{fix}	223 +t _{fix}	210 +t _{fix}	240 +t _{fix}	265 +t _{fix}
		Reduction t_{fix} (with washer with bore 2b)	2	2	2	2	2	2	2	2	2	2	2
3	3 Hexagon nut SW		24	24	24	24	24	30	30	30	36	36	36

¹⁾ When using washer with bore (2b) the thickness of fixture is reduced by the specified value.

Dimensions in mm

SIKLA Injection System VMZ


Product description VMZ-A: Anchor dimensions

Annex A4

Table A4: Materials VMZ-IG

Part	Designation	Steel, zinc plated ≥ 5µm	Stainless steel A4 (CRC III)	High corrosion resistant steel HCR (CRC V)
1	Anchor rod	Steel acc. to EN ISO 683-4:2018, galvanized and coated	Stainless steel, 1.4401, 1.4404, 1.4571 acc. to EN 10088:2014, coated	High corrosion resistant steel 1.4529, 1.4565 acc. to EN 10088:2014, coated
4	Mortar cartridge	Vinylest	ter resin, styrene free, mixing ra	atio 1:10

identifying mark of manufacturing plant

80 anchorage depthVMZ fastener identityM10 size of internal thread

A4 additional marking of stainless steel

HCR additional marking of high corrosion resistant

steel

Table A5: Dimensions of anchor rod VMZ-IG

Anchor size	VMZ	Z-IG	40 M6	50 M6	60 M8	75 M8	70 M10	80 M10	90 M12	105 M12	125 M12	115 M16	170 M16	170 M20
Internal thread		-	M	16	M	18	М	10		M12		M	16	M20
Number of cones		-	2	3	3	3	3	4	3	4	6	3	6	6
Outer diameter	dk	[mm]	8,0	8,0	9,7	10,7	12,5	12,5	16,5	16,5	16,5	19,7	22,0	24,0
Thread length	L_{th}	[mm]	12	15	16	19	20	23	24	27	30	32	32	40
Total length	L	[mm]	41	52	63	78	74	84	94	109	130	120	180	182
Length identifier		[mm]	L _{dh} < 18	L _{dh} > 19	L _{dh} < 22,5	L _{dh} > 23,5	L _{dh} < 27	L _{dh} > 28	L _{dh} < 31,5	32,5 < L _{dh} < 34,5	L _{dh} > 35,5	d _k < 21	d _k > 21	-

Requirements of the fastening screw or the threaded rod and nut

- Minimum screw-in depth L_{sdmin} see Table B7
- The length of screw or the threaded rod must depending on the thickness of fixture t_{fix} , available thread length L_{th} (=maximum available thread length, see Table B7) and the minimum screw-in depth L_{sdmin} be established
- A₅ > 8 % ductility
- Material
 - Steel, zinc plated: Minimum property class 8.8 according to EN ISO 898-1:2013 or EN ISO 898-2:2012
 - Stainless steel A4: Minimum property class 70 according to EN ISO 3506:2020
 - High corrosion resistant steel (HCR): Minimum property class 70 according to EN ISO 3506:2020

SIKLA Injection System VMZ	
Product description VMZ-IG: Materials, Marking, Anchor dimensions	Annex A5

Specifications of intended use

Injection System VMZ with	th anchor rod VMZ-A	M8	M10	M12	M16	M20	M24	
,		1110	10.10		/	11120		
Static and quasi-static acti		<u> </u>	Т ,	· ·	<u>/</u>			
Seismic action (Category (C1 + C2)	-	✓	✓	✓	✓	✓	
Cracked or uncracked con	crete			•				
Strength classes acc. to E	N 206:2013+A1:2016			C20/25 t	o C50/60			
Reinforced or unreinforced to EN 206:2013+A1:2016	d normal weight concrete acc.				/			
Temperature Range I	-40 °C to +80 °C		nax. short nax. long t					
Temperature Range II	-40 °C to +120 °C		max. short term temperature +120 °C max. long term temperature +72 °C					
	Hammer drill bit			٠	/			
Making of drill hole -	Vacuum drill bit1)	-	✓	✓	✓	✓	✓	
Making of drill hole	Diamond drill bit (seismic action excluded)	-	✓	✓	✓	✓	✓	
	dry concrete			,	/			
Installation allowable in	wet concrete			,	/			
	water-filled hole	<u> - </u>		√ 2)	_ <	✓	✓	
Overhead installation				,	/			
Pre-setting installation				,	/			
Trough-setting installation		-	✓	✓	✓	✓	√	

¹⁾ e.g. MKT vacuum drill bit, Würth hammer drill bit with suction or Heller Duster Expert 2) Exception: VMZ-A 75 M12 (Installation in water-filled drill hole is not allowed)

Injection System VMZ with	anchor rod	VMZ-IG	М6	M8	M10	M12	M16	M20			
Static and quasi-static action	١		√								
Seismic action (Category C1	+ C2)				-						
Cracked and uncracked con	crete				٧	/					
Strength classes acc. to EN	206:2013+A1:201	6			C20/25 to	o C50/60					
Reinforced or unreinforced normal weight concrete acc. to EN 206:2013+A1:2016											
Temperature Range I	-40 °C	C to +80 °C			hort term temperature +80 °C ong term temperature +50 °C						
Temperature Range II	-40 °C	to +120 °C			short term temperature +120 °C ong term temperature +72 °C						
	Ham	mer drill bit	✓								
Making of drill hole	Vacui	um drill bit ¹⁾	-	✓	✓	✓	✓	✓			
	Diam	ond drill bit	-	✓	✓	✓	✓	✓			
la stallation	d	ry concrete			٧	/					
Installation - allowable in -	W	et concrete	ncrete ✓								
anowable in	wate	r-filled hole	-	-	✓	✓	✓	✓			
Overhead installation			√								
Pre-setting installation			✓								

¹⁾ e.g. MKT vacuum drill bit, Würth hammer drill bit with suction or Heller Duster Expert

SIKLA Injection System VMZ	
Intended use Specifications and installation conditions	Annex B1

Specifications of intended use

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions: all versions VMZ-A and VMZ-IG
- For all other conditions:
 Intended use of materials according to Annex A3, Table A1 and Annex A5, Table A4 corresponding to the corrosion resistance class CRC to EN 1993-1-4:2015

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to
 reinforcement or to supports, etc.).
- Anchorages are designed in accordance with EN 1992-4:2018 and Technical Report TR 055, Edition February 2018.

Installation:

- Drill hole must be cleaned directly prior to installation of the anchor or the drill hole has to be protected against re-contamination in an appropriate way until dispensing the mortar in the drill hole.
- Water filled drill holes must not be polluted otherwise the cleaning of the drill hole must be repeated.
- The anchor component installation temperature shall be at least +5 °C; during curing of the injection mortar the temperature of the concrete must not fall below -15 °C.
- It must be ensured that icing does not occur in the drill hole.
- Optionally, the annular gap between anchor rod and fixture may be filled with injection adhesive VMZ using the washer with bore (Part 2b, Annex A3) instead of the washer (Part 2a, Annex A3).

SIKLA Injection System VMZ	
Intended use Specifications	Annex B2

Table B1: Working and curing time VMZ

Temperature in the drill hole	Maximum working time	Minimum curing time dry concrete 1)
- 15 °C to - 10 °C	45 min	7 d
- 9 °C to - 5 °C	45 min	10:30 h
- 4 °C to - 1 °C	45 min	6:00 h
0 °C to + 4 °C	20 min	3:00 h
+5 °C to + 9 °C	12 min	2:00 h
+10 °C to +19 °C	6 min	1:20 h
+20 °C to +29 °C	4 min	45 min
+30 °C to +34 °C	2 min	25 min
+35 °C to +39 °C	1,4 min	20 min
+ 40 °C	1,4 min	15 min
Cartridge temperature	≥ 5	°C

¹⁾ Curing time in wet concrete shall be doubled.

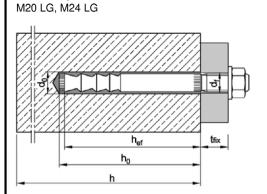
Table B2: Working and curing time VMZ express

Temperature in the drill hole	Maximum working time	Minimum curing time dry concrete 1)
-5°C to -1°C	20 min	4:00 h
0 °C to + 4 °C	10 min	2:00 h
+ 5 °C to + 9 °C	6 min	1:00 h
+10 °C to +19 °C	3 min	40 min
+20 °C to +29 °C	1 min	20 min
+ 30 °C	1 min	10 min
Cartridge temperature	≥ 5°	C

¹⁾ Curing time in wet concrete shall be doubled.

SIKLA Injection System VMZ	
Intended use Working and curing time	Annex B3

Table B3: Installation parameters, VMZ-A M8 - M12


Anchor size	VM	Z-A	40 M8	50 M8	60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12
Effective anchorage depth	h _{ef} ≥	[mm]	40	50	60	75	75	70	80	95	100	110	125
Nominal diameter of drill hole	d ₀ =	[mm]	10	10	12	12	12	14	14	14	14	14	14
Depth of drill hole	$h_0\geq$	[mm]	42	55	65	80	80	75	85	100	105	115	130
Diameter of cleaning brush	D≥	[mm]	10,8	10,8	13,0	13,0	13,0	15,0	15,0	15,0	15,0	15,0	15,0
Installation torque	$T_{inst} \leq$	[Nm]	10	10	15	15	25	25	25	25	30	30	30
Diameter of clearance hole	in the f	ixture											
Pre-setting installation	d _f ≤	[mm]	9	9	12	12	14	14	14	14	14	14	14
Through-setting installation	d f ≤	[mm]	-	-	14	14	14 ¹⁾ /	16	16	16	16	16	16

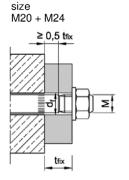
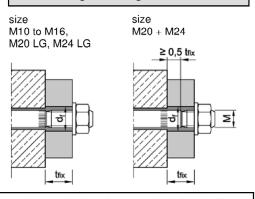

¹⁾ see Annex B11

Table B4: Installation parameters, VMZ-A M16 – M24


Anchor size	VM	IZ-A	90 M16	105 M16	125 M16	145 M16	160 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)
Effective anchorage depth	h _{ef} ≥	[mm]	90	105	125	145	160	115	170	190	170	200	225
Nominal diameter of drill hole	d ₀ =	[mm]	18	18	18	18	18	22	24	24	26	26	26
Depth of drill hole	$h_0\geq$	[mm]	98	113	133	153	168	120	180	200	185	215	240
Diameter of cleaning brush	D≥	[mm]	19,0	19,0	19,0	19,0	19,0	23,0	25,0	25,0	27,0	27,0	27,0
Installation torque	$T_{inst} \leq$	[Nm]	50	50	50	50	50	80	80	80	100	120	120
Diameter of clearance hole	in the	fixture											
Pre-setting installation	d f ≤	[mm]	18	18	18	18	18	22	24 (22)	24 (22)	26	26	26
Through-setting installation	d f ≤	[mm]	20	20	20	20	20	24	26	26	28	28	28

Pre-setting installation size M8 to M16,

Through-setting installation

The annular gap in the clearance hole in the fixture has to be filled completely by excess mortar!

SIKLA Injection System VMZ

Intended use Installation parameters VMZ-A

Annex B4

8.06.01-289/21

Z113449.21

Table B5: Minimum spacing and edge distance, VMZ-A M8 - M12

Anchor size	VM	Z-A	40 M8	50 M8	60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12
Minimum thickness of concrete	h _{min}	[mm]	80	80	100	110 100 ¹⁾	110	110	110	130 125 ¹⁾	130	140	160
Cracked concrete													
Minimum spacing	Smin	[mm]	40	40	40	40	50	55	40	40	50	50	50
Minimum edge distance	Cmin	[mm]	40	40	40	40	50	55	50	50	50	50	50
Uncracked concrete	Uncracked concrete												
Minimum spacing	Smin	[mm]	40	40	50	50	50	55	55	55	802)	802)	802)
Minimum edge distance	Cmin	[mm]	40	40	50	50	50	55	55	55	55 ²⁾	55 ²⁾	55 ²⁾

Table B6: Minimum spacing and edge distance, VMZ-A M16 - M24

Anchor size	VM	Z-A	90 M16	105 M16	125 M16	145 M16	160 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)
Minimum thickness of concrete	h _{min}	[mm]	130	150	170 160 ¹⁾	190 180 ¹⁾	205 200 ¹⁾	160	230 220 ¹⁾	250 240 ¹⁾	230 220 ¹⁾	270 260 ¹⁾	300 290 ¹⁾
Cracked concrete													
Minimum spacing	Smin	[mm]	50	50	60	60	60	80	80	80	80	80	80
Minimum edge distance	Cmin	[mm]	50	50	60	60	60	80	80	80	80	80	80
Uncracked concrete													
Minimum spacing	Smin	[mm]	50	60	60	60	60	80	80	80	80	105	105
Minimum edge distance	Cmin	[mm]	50	60	60	60	60	80	80	80	80	105	105

¹⁾ The reverse of the concrete member must not be damaged after drilling and must be filled with high-strength mortar if drilled through.

SIKLA Injection System VMZ

Intended use
Minimum spacing and edge distance, VMZ-A

Annex B5

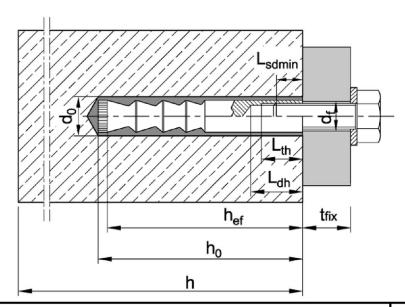

²⁾ For an edge distance $c \ge 80$ mm a minimum spacing $s_{min} = 55$ mm is applicable.

Table B7: Installation parameters VMZ-IG

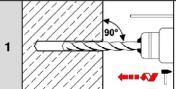
	•													
Anchor size	VI	/IZ-IG	40 M6	50 M6	60 M8	75 M8	70 M10	80 M10	90 M12	105 M12	125 M12	115 M16	170 M16	170 M20
Effective anchorage depth	h _{ef}	[mm]	40	50	60	75	70	80	90	105	125	115	170	170
Nominal diameter of drill hole	d_0	[mm]	10	10	12	12	14	14	18	18	18	22	24	26
Depth of drill hole	$h_0\geq$	[mm]	42	55	65	80	80	85	98	113	133	120	180	185
Diameter of cleaning brush	D≥	[mm]	10,8	10,8	13,0	13,0	15,0	15,0	19,0	19,0	19,0	23,0	25,0	27,0
Installation torque	$T_{inst} \leq$	[Nm]	8	8	10	10	15	15	25	25	25	50	50	80
Diameter of clearance hole in the fixture	d f ≤	[mm]	7	7	9	9	12	12	14	14	14	18	18	22
Available thread length	L_{th}	[mm]	12	15	16	19	20	23	24	27	30	32	32	40
Minimum screw-in depth	L _{sdmin}	[mm]	7	7	9	9	12	12	14	14	14	18	18	22
Minimum thickness of concrete	h _{min}	[mm]	80	80	100	110	110	110	130	150	170 160 ¹⁾	160	230 220 ¹⁾	230 220 ¹⁾
Cracked concrete														
Minimum spacing	Smin	[mm]	40	40	40	40	55	40	50	50	60	80	80	80
Minimum edge distance	Cmin	[mm]	40	40	40	40	55	50	50	50	60	80	80	80
Uncracked concrete														
Minimum spacing	Smin	[mm]	40	40	50	50	55	55	50	60	60	80	80	80
Minimum edge distance	Cmin	[mm]	40	40	50	50	55	55	50	60	60	80	80	80

¹⁾ The reverse of the concrete member must not be damaged after drilling and must be filled with high-strength mortar if drilled through.

SIKLA Injection System VMZ

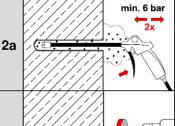
Intended use

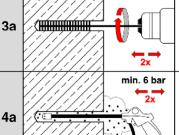
Installation parameters VMZ-IG


Annex B6

Installation instructions - Hammer drill bit

Hammer drill bit

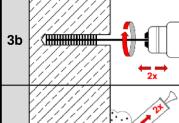

Hole drilling


Use hammer drill or compressed air drill with drill bit and depth gauge. Drill perpendicular to concrete surface.

Cleaning

Cleaning with compressed air (all sizes)

Connect Air Blower to compressed air (min. 6 bar, oil-free). Open air valve and blow out drill hole along the entire depth with back and forth motion at least two times.


Check diameter of cleaning brush. If the brush can be pushed into the drill hole without any resistance, it must be replaced. Chuck brush into drill machine. Turn on drill machine and brush drill hole back and forth along the entire drill hole depth at least two times while rotated by drill machine.

Connect Air Blower to compressed air (min. 6 bar, oil-free). Open air valve and blow out drill hole along the entire depth with back and forth motion at least two times.

Manual cleaning (alternatively, up to drill hole diameter 18mm)

Blow out drill hole from the bottom with Blow-out pump at least two times.

Check diameter of cleaning brush. If the brush can be pushed into the drill hole without any resistance, it must be replaced. Chuck brush into drill machine. Turn on drill machine and brush drill hole back and forth along the entire drill hole depth at least two times while rotated by drill machine.

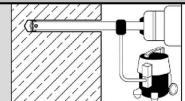
Blow out drill hole from the bottom with Blow-out pump at least two times.

SIKLA Injection System VMZ

Intended use

4b

Installation instructions
Hole drilling and cleaning (hammer drill bit)


Annex B7

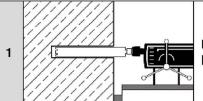
Installation instructions - Vacuum drill bit

Vacuum drill bit

Hole drilling and cleaning

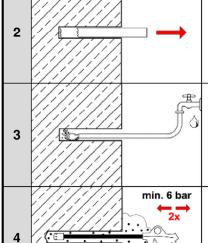
Drill hole perpendicular to concrete surface by using a vacuum drill bit (see Annex B1). The nominal underpressure of the vacuum cleaner must be at least 230 mbar / 23kPa.

Pay attention to the function of the dust extraction system!


Make sure the dust extraction is working properly throughout the whole drilling process.

Additional cleaning is not necessary - continue with step 5!

Installation instructions - Diamond drilling


Diamond drilling

Hole drilling

Use diamond drill with diamond drill bit and depth gauge. Drill perpendicular to concrete surface.

Cleaning

Remove drill core at least up to the nominal hole depth and check drill hole depth.

Flushing of drill hole:

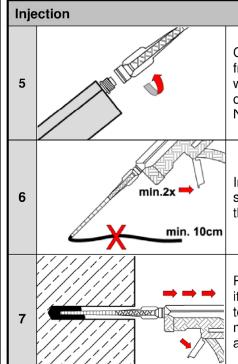
Flush drill hole with water, starting from the bottom, until clear water gets out of the drill hole.

Connect Air Blower to compressed air (min. 6 bar, oil-free).

Open air valve and blow out drill hole along the entire depth with back and forth motion at least two times.

SIKLA Injection System VMZ

Intended use


Installation instructions

Hole drilling and cleaning (vacuum drill bit and diamond drill bit)

Annex B8

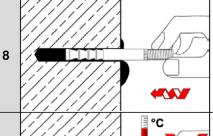
Installation instructions - Continuation

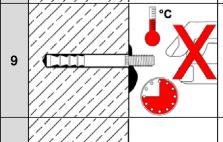
Check expiration date on cartridge. Never use when expired. Remove cap from cartridge. Attach the supplied static mixer to the cartridge. For every working interruption longer than the recommended working time (Table B1 or Table B2) as well as for a new cartridge always use a new static mixer. Never use static mixer without helix inside.

Insert cartridge in Dispenser. Before injecting discard mortar (at least 2 full strokes or a line of 10 cm) until it shows a consistent grey colour. Never use this mortar.

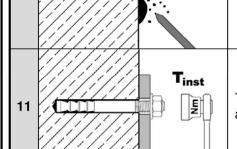
Prior to injection, check if static mixer reaches the bottom of the drill hole. If it does not reach the bottom, plug Mixer Extension onto static mixer in order to fill the drill hole properly. Fill hole with a sufficient quantity of injection mortar. Start from the bottom of the drill hole and work out to avoid trapping air pockets.

SIKLA Injection System VMZ


Intended use Installation instructions Injection **Annex B9**

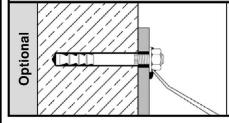

Installation instructions - Continuation

Anchor rod VMZ-A


Inserting the anchor rod

Insert the anchor rod VMZ-A by hand, rotating slightly up to the full embedment depth as marked on the anchor rod. The anchor rod is properly set when excess mortar seeps from the hole (Pre-setting installation) or the annular gap in the clearance hole in the fixture is completely filled by excess mortar (Through-setting installation). If the hole is not completely filled, pull out anchor rod, let mortar cure, drill out hole and repeat entire cleaning process.

Follow minimum curing time shown in Table B1 or Table B2 During curing time, anchor rod must not be moved or loaded.



Remove excess mortar.

The fixture can be mounted after curing time. Apply installation torque T_{inst} according to Table B3 or Table B4 by using torque wrench.

Filling annular gap

10

Annular gap between anchor rod and attachment may optionally be filled with mortar. Therefore, replace regular washer by washer with bore and plug on reducing adapter on static mixer.

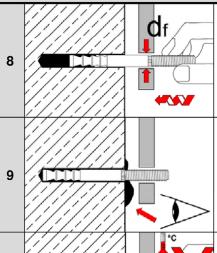
Annular gap is completely filled, when excess mortar seeps out.

SIKLA Injection System VMZ

Intended use

Installation instructions
Installation Anchor rod VMZ-A

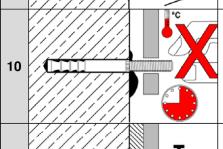
Annex B10

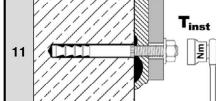


Installation instructions – Stand-off Installation

Stand-off installation with Anchor rod VMZ-A 75 M12

Requirement: Diameter of clearance hole in the fixture df ≤ 14 mm


Work step 1-7 as illustrated in Annexes B7 - B9


Insert the anchor rod VMZ-A by hand, rotating slightly up to the full embedment depth.

Check if excess mortar seeps from the hole. If the hole is not completely filled, pull out anchor rod, let mortar cure, drill out hole and repeat the entire cleaning process.

The annular gap in the fixture does not have to be filled.

During curing time according to Table B1 or Table B2 anchor rod must not be moved or loaded.

Washer and nut can be mounted after curing time and backfilling of anchor plate. Apply installation torque T_{inst} according to Table B3 by using torque wrench.

SIKLA Injection System VMZ

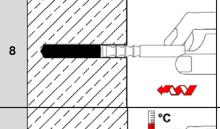
Intended use

Installation instructions VMZ-A 75 M12

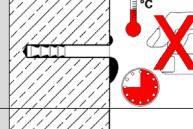
Through-setting installation with clearance between concrete and anchor plate

Annex B11

Installation instructions - Continuation


Anchor rod VMZ-IG

Setting of anchor


9

10

Work step 1-7 as illustrated in Annexes B7 - B9

Insert the anchor rod VMZ-IG by hand, rotating slightly up to about 1 mm below the concrete surface in the drill hole. The anchor rod is properly set when excess mortar seeps from the hole. If the hole is not completely filled, pull out anchor rod, let mortar cure, drill out hole and repeat the entire cleaning process.

Follow minimum curing time shown in Table B1 and Table B2. During curing time anchor rod must not be moved or loaded.

Remove excess mortar.

T_{inst}

The fixture can be mounted after curing time. Apply installation torque $\mathsf{T}_{\mathsf{inst}}$ according to Table B7 by using torque wrench.

SIKLA Injection System VMZ

Intended use

Installation instructions
Anchor installation VMZ-IG

Annex B12

Table C1: Characteristic values for concrete failure and splitting

Anchor siz	!e	_	/MZ-A MZ-IG	all sizes
Concrete co	one failure			
Factor	uncracked concrete	k _{ucr,N}	[-]	11,0
Factor	<u>cracked</u> concrete	k _{cr,N}	[-]	7,7
Characteris	stic edge distance	C _{cr,N}	[mm]	1,5 • h _{ef}
Characterist	tic spacing	S _{cr,N}	[mm]	2 · C _{cr,N}
Case 1	e for N _{Rk,sp} of case 1 and	case 2 m	[kN]	applied for the design. see following tables
Characteris	stic edge distance	C cr,sp	[mm]	1,5 • h _{ef}
Characteris	stic spacing	S _{cr,sp}	[mm]	2 · C _{cr,sp}
Case 2				
Characteris	stic resistance	N ⁰ Rk,sp	[kN]	min [N _{Rk,p} ; N ⁰ _{Rk,c}]
Characteris	stic edge distance	C _{cr,sp}	[mm]	see following tables
Characteris	stic spacing	S _{cr,sp}	[mm]	2 · C _{cr,sp}

SIKLA Injection System VMZ	
Performance Characteristic values for concrete failure and splitting, VMZ-A and VMZ-IG	Annex C1

Table C2: Characteristic values for tension loads, VMZ-A M8 – M12, static and quasi-static action

Anchor size		V	MZ-A	40 M8	50 M8	60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12
Installation factor		γinst	[-]						1,0					
Steel failure														
Characteristic resista	ance	N _{Rk,s}	[kN]	15	15 18 25 35 49 54 57						57			
Partial factor γ _{Ms} [.									1,5					
Pull-out	,													
Characteristic resista	ance (concr	ete C20	ე/25)											
<u>anoraonea</u>	°C / 80°C ¹⁾ C / 120°C ¹⁾	N _{Rk,p}	[kN]	9	17,4	22,9 16	32 16	32 16	28,8 16	35,2 25	40 25	49,2 30	50 30	50 30
<u> </u>	°C / 80°C ¹⁾ C / 120°C ¹⁾	N _{Rk,p}	[kN]	8,7 5	12,2 7,5	16 12	22,4 12	22,4 12	20,2	24,6 20	31,9 20	34,4 30	39,7 30	48,1
Splitting														
Splitting for standard		of cor	ıcrete	memt	oer									
Standard thickness concrete	of r	າ _{min,1} ≥	[mm]	1(00	120	150	150	140	160	190	200	220	250
Case 1														
Characteristic resista (concrete C20/25)	ance	N ⁰ Rk,sp	[kN]	7,5	9	16	20	2	20	35,2	30		40	
Case 2														
Characteristic edge of	distance	C _{cr,sp}	[mm]	3 ł	h _{ef}	2,5h _{ef}	3,5h _{ef}	3,5h _{ef}	2,5h _{ef}	1,5h _{ef}	2,5h _{ef}	2 h _{ef}	3 h _{ef}	2,5he
Splitting for minimur		s of co	ncrete	mem	ber									
Minimum thickness of concrete	of h	າ _{min,2} ≥	[mm]	8	30	1(00		110		125	130	140	160
Case 1														
Characteristic resista (concrete C20/25)	ance	N ⁰ Rk,sp	[kN]	7,5	2)	1	6	16	20	25	25		30	
Case 2					,									
Characteristic edge of	distance	C _{cr,sp}	[mm]	3h _{ef}	3,5h _{ef}	3 h _{ef}	$3,5h_{ef}$	3,5	5h _{ef}	3h _{ef}	3,5h _{ef}		$3h_{\text{ef}}$	
Increasing factor for $N_{Rk,p}$ and $N^0_{Rk,sp}$ (Cas $N_{Rk,p} = \psi_c \cdot N_{Rk,p}$ (C2	se 1)	Ψα	[-]					($\left(\frac{f_{ck}}{20}\right)^{0.5}$;				
Concrete cone failu	ıre													
Effective anchorage	depth	h _{ef}	[mm]	40	50	60	75	75	70	80	95	100	110	125

 $^{^{1)}\,\}mathrm{Maximum}$ long-term temperature / Maximum short-term temperature $^{2)}\,\mathrm{No}$ performance assessed

SIKLA Injection System VMZ

Performance

Characteristic values for tension loads, VMZ-A M8 – M12, static and quasi-static action

Annex C2

Table C3: Characteristic values for **tension loads**, **VMZ-A M16 – M24**, static and quasi-static action

Anchor size	V	MZ-A	90 M16	105 M16	125 M16	145 M16	160 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG
Installation factor	γinst	[-]						1,0					
Steel failure													
Characteristic Steel, tension	zinc plated	[kN]	88	95	1	11	97	96	18	38		222	
resistance N _{Rk,s}	A4, HCR	[kN]	88	95	1	11	97	114	16	65		194	
Partial factor	γMs	[-]			1,5			1,68	1	,5		1,5	
Pull-out													
Characteristic resistance (concrete C20/25)													
uncracked 50°C/8	0°C¹) N _{Rk,p}	[kN]	42	52,9	68,8	75	90	60,7	109	128,8	109	139,1	160
concrete 72°C/12	0°C ¹⁾	[kN]	25	35	5	0	53	40	7	5		95	
cracked 50°C/8	N _{D1}	[kN]	29,4	37,1	48,1	60,1	69,7	42,5	76,3	90,2	76,3	97,4	116
concrete 72°C/12	0°C1)	[kN]	25	30	5	0	51	30	6	0		75	
Splitting													
Splitting for standard to	nickness o	conc	rete										
Standard thickness of concrete	$h_{\text{min},1} \geq$	[mm]	180	200	250	290	320	230	340	380	340	400	45
Case 1													
Characteristic resistano (concrete C20/25)	e N ⁰ Rk,sp	[kN]	40	5	0	60	80	60,7	109	115	109	139,1	14
Case 2				•								•	
Characteristic edge distance	Ccr,sp	[mm]			2 h _{ef}			1,5	h _{ef}	2 h _{ef}	1,5	h _{ef}	1,8
Splitting for minimum t	hickness o	f cond	rete										
Minimum thickness of concrete	$h_{\text{min},2} \geq$	[mm]	130	150	160	180	200	160	220	240	220	260	29
Case 1													
Characteristic resistanc (concrete C20/25)	e N ⁰ Rk,sp	[kN]	35	50	40	50	71	2)	7	5	109	1	15
Case 2				•		•							
Characteristic edge distance	Ccr,sp	[mm]	2,5	5h _{ef}	3h _{ef}	2,5	5h _{ef}	2,5h _{ef}	2,6h _{ef}	2,2h _{ef}	2,6h _{ef}	2,2	2h _{ef}
Increasing factor for N _{Rk,p} and N ⁰ _{Rk,sp} (case 1) N _{Rk,p} = ψ _c · N _{Rk,p} (C20/2)	•	[-]	$\left(\frac{f_{\rm ck}}{20}\right)^{0.5}$										
Concrete cone failure													
	oth h _{ef}	[mm]	90	105	125	145	160	115	170	190	170	200	22

¹⁾ Maximum long-term temperature / Maximum short-term temperature

SIKLA Injection System VMZ

Performance

Characteristic values for $tension\ loads,\ VMZ-A\ M16-M24,\ static\ and\ quasi-static\ action$

Annex C3

²⁾ No performance assessed

Table C4: Characteristic values for **shear load**, **VMZ-A M8 – M12**, static and quasi-static action

Anchor size	VMZ	A	40 M8	50 M8	60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12
Installation factor	γinst	[-]					1,0						
Steel failure with	nout lever arm												
Characteristic resistance	Steel, zinc plated	[kN]	1	4	2	1				34			
V ⁰ _{Rk,s}	A4, HCR	[kN]	1	5	2	3				34			
Partial factor	γMs	[-]						1,25					
Ductility factor	k ₇	[-]						1,0					
Steel failure with	n lever arm												
Characteristic bending	Steel, zinc plated	[Nm]	3	80	6	0				105			
resistance M ⁰ Rk,s	A4, HCR	[Nm]	(3)	80	6	0				105			
Partial factor	γMs	[-]						1,25	,				
Concrete pry-ou	t failure												
Pry-out factor	k ₈	[-]						2					
Concrete edge f	ailure												
Effective length of in shear load	f anchor	[mm]	40	50	60	75	75	70	80	95	100	110	125
Outside diameter	of anchor d _{nom}	[mm]	1	0	1	2	12	12 14					

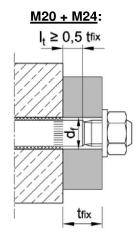

SIKLA Injection System VMZ	
Performance Characteristic values for shear load, VMZ-A M8 – M12, static and quasi-static action	Annex C4

Table C5: Characteristic values for **shear load**, **VMZ-A M16 – M24**, static or quasi-static action

Anchor size	VM	VMZ-A		105 M16	125 M16	145 M16	160 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)	
Installation factor	γinst	[-]					1,0							
Steel failure withou	ıt lever arm													
Characteristic resistance	Steel, zinc plated	[kN]	63					70 149 ¹⁾ (98)				178 ¹⁾ (141)		
V ⁰ _{Rk,s}	A4, HCR	[kN]		63 86 131 ¹⁾ (86)				156 ¹⁾ (123)						
Partial factor	γMs	[-]			1,25			1,4	1,2	25	1,25			
Ductility factor	k ₇	[-]						1,0						
Steel failure with le	ver arm													
Characteristic bending resistance	Steel, zinc plated	[Nm]			266			392	51	19		896		
$M^0_{Rk,s}$	A4, HCR	[Nm]			266				454			784		
Partial factor	γMs	[-]			1,25			1,4	1,	25		1,25		
Concrete pry-out fa	ailure													
Pry-out factor	k ₈	[-]						2,0						
Concrete edge failu	ıre													
Effective length of ar in shear load	nchor I _f	[mm]	90	105	125	145	160	115	170	190	170	200	225	
Outside diameter of anchor	d _{nom}	[mm]	m] 18 22 24				26							

 $^{^{1)}}$ This value may only be applied if $l_{t} \geq$ 0,5 t_{fix}

SIKLA Injection System VMZ	
Performance Characteristic values for shear load, VMZ-A M16 – M24, static and quasi-static action	Annex C5

Table C6: Characteristic values for seismic action ,	
VMZ-A M10 – M12 performance category	C1 and C2

Anchor size	· size		-A	60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12
Tension loads												
Installation factor γ_{inst} [-] 1,0												
Steel failure, steel zinc plated, stainless steel A4, HCR												
Characteristic resistanc	Characteristic resistance N _{Rk,s,C} N _{Rk,s,C}				25 35 49 54				57			
Partial factor		γMs	[-]					1,5				
Pull-out (concrete C20	/25 to C50/6	60)										
	NI	50°C / 80°C 1)	[kN]	14	l,5	14	1,5	30,6		36,0	41,5	42,8
N _{Rk,p} Characteristic		72°C / 120°C ¹⁾	[kN]	10),9	10),9	20,0		30,0		
resistance	N	50°C / 80°C ¹⁾	[kN]	7	,4	7,4		8,7		17,6		
	$N_{Rk,p,C2}$ –	72°C / 120°C ¹⁾	[kN]	5	,1	5,1		6,5		12,3		

Shear loads								
Steel failure v	vithout lever arm, steel	zinc plated						
Characteristic	rociotopoo —	$V_{Rk,s,C1}$	[kN]	11,8	27,2			
Characteristic	resistance	$V_{Rk,s,C2}$	[kN]	12,6	27,2			
Partial factor		γMs	[-]	1,25				
Steel failure v	vithout lever arm, stain	less steel A4	, HCR					
Characteristic	raciatanaa	$V_{Rk,s,C1}$	[kN]	12,9	27,2			
Characteristic	resistance –	$V_{Rk,s,C2}$	[kN]	13,8	27,2			
Partial factor		γMs	[-]		1,25			
Factor for	filled annular gap	αgap	[-]	1,0				
with	anchorages unfilled annular gap		[-]	0,5				

 $^{^{\}rm 1)}$ Maximum long-term temperature / Maximum short-term temperature

SIKLA Injection System VMZ	
Performance Characteristic values for seismic action, VMZ-A M10 – M12, performance category C1 and C2	Annex C6

Table C7: Characteristic values for seismic action, VMZ-A M16 – M24, performance category C1 and C2

Anchor size)	VM	Z-A	90 M16	105 M16	125 M16	145 M16	160 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)
Tension loa	ıds													
Installation factor γ_{inst} [-] 1,0														
Steel failure	e, steel zinc _l	plated										_		
Characterist resistance	ic	$N_{\text{Rk,s,C1}}$	[kN]	88	95	11	1	97 96 188		188 22		222		
Steel failure	e, stainless s	teel A4, HC	R											
Characterist resistance	ic	$N_{\text{Rk,s,C1}}$	[kN]	88	95	11	1	97	114	16	5		194	
Partial facto	r	γMs	[-]			1,5			1,68	1,	5		1,5	
Pull-out (co	ncrete C20/2	5 to C50/60)										_		
	50	0°C / 80°C 1)	[kN]	30,7	38,7		43,7		44,4	88	,2		90,7	
Charac-	N _{Rk,p,C1} 72°	C / 120°C ¹⁾	[kN]	25,0	30,0		38,5		29,4	55,8			59,3	
teristic - resistance	50	0°C / 80°C 1)	[kN]	16,3	22,1		26,1		30,9	59	,7		59,7	
	N _{Rk,p,C2} 72°	C / 120°C ¹⁾	[kN]	10,5	14,4		19,5		16,2	44	,4		44,4	

Shear loads										
Steel failure without lever arm, steel zinc plated										
Characteristic	$V_{Rk,s,C1}$	[kN]	39,1	39,1	82,3	107				
resistance	V _{Rk,s,C2}	[kN]	50,4	51	108,8 ¹⁾ (71,5)	154,9 ¹⁾ (122,7)				
Partial factor	γMs	[-]	1,25	1,4	1,25	1,25				
Steel failure without lever arm, stainless steel A4, HCR										
Characteristic	$V_{Rk,s,C1}$	[kN]	39,1	39,1	72,2	93				
resistance	V _{Rk,s,C2}	[kN]	50,4	62,6	95,6 ¹⁾ (62,8)	135,7 ¹⁾ (107)				
Partial factor	γMs	[-]	1,25	1,4	1,25	1,25				
	nnular gap α _{gap}	[-]		1,0						
anchorages unfille with	ed annular gap ^{αgap}	[-]		0,5						

 $^{^{1)}}$ This value may only be applied if $I_{t} \geq 0.5\ t_{\text{fix.}}$ (see Annex C4)

SIKLA Injection System VMZ	
Performance Characteristic values for seismic action, VMZ-A M16 – M24, performance category C1 and C2	Annex C7

Anchor size	VM	Z-A	40 M8	50 M8	60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12		
Tension load in cracked concrete	N	[kN]	4,3	6,1	8,0	11,1	11,1	10,0	12,3	15,9	17,1	19,8	24,0		
Diaplacement	δ_{N0}	[mm]	0	0,5 0,6								0,7			
Displacement -	δN∞	[mm]		1,3											
Tension load in uncracked concrete	N	[kN]	4,3	8,5	11,1	15,6	15,6	14,1	17,2	19,0	24,0	23,8	23,8		
Dianlacement	δ_{N0}	[mm]	0,2	0,4	0,4		0,4					0,6			
Displacement -	δ _{N∞}	[mm]			1,3										
Displacements under seismic te	nsion	loads	C2												
Displacements for DLS $\delta_{N,C}$	C2(DLS)	[mm]		erfor-	1,	0	1,	0	1,	,3		1,1			
Displacements for ULS δ _{N,C}	C2(ULS)	[mm]		nce ssed	3,	0	3,	0	3,	3,9		3,0			

Table C9: Displacements under tension loads, VMZ-A M16 – M24

Anchor size	VM	Z-A	90 M16	105 M16	125 M16	145 M16	160 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)
Tension load in cracked concrete	N	[kN]	14,6	18,4	24,0	30,0	34,7	21,1	38,0	44,9	38,0	48,5	57,9
Displacement	δνο	[mm]		0,7		0,8	1,2	0,7	0,8		0,8	0	,9
	δn∞	[mm]	1,3			1,3 1,6 1,1 1,3		1,3					
Tension load in uncracked concrete	N	[kN]	20,5	25,9	33,0	35,7	48,1	29,6	53,3	63,0	53,3	67,9	81,1
Displacement	δνο	[mm]		0	,6		0,8		0,6		0,6		
Displacement	δn∞	[mm]		1	,3		1,6	1,1	1	,3	1,3		
Displacements under seismic tension load		loads	C2										
Displacements for DLS δ_{N_s}	C2(DLS)	[mm]	1	,6		1,5		1,7	1	,9		1,9	
Displacements for ULS $\delta_{N,N}$	C2(ULS)	[mm]	3	,7		4,4		4,0	4	,5		4,5	

SIKLA Injection System VMZ	
Performance Displacements under tension loads, VMZ-A	Annex C8

Table C10: Displacements under shear loads VMZ-A M8 - M12

Anchor size	VM	VMZ-A		50 M8	60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12		
Shear load	V		8,	3	13	,3	19,3								
Diaplacamenta	δνο	[mm]	2,4	2,5	2,	9				3,3	3,3				
Displacements	δν∞	[mm]	3,6 3,8		4,	4	5,0								
Displacements under seisn	nic shea	ır load:	s C2	s C2											
Displacements for DLS 8	SV,C2(DLS)	[mm]		erfor-	2,	1				2,5					
Displacements for ULS 8	$S_{ m V,C2(ULS)}$	[mm]		nce ssed	3,	7				5,1			·		

Table C11: Displacements under shear loads VMZ-A M16 – M24

Anchor size	VMZ-	-A	90 105 M16 M16		125 M16	145 M16	160 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)	
Shear load	V [[kN]			36			44	7 (4	5 9)				
Dieplecomente	δ _{V0} [r	mm]			3,8			3,0	4, (3,	3 0)	4,6 (3,5)			
Displacements		mm]			5,7			4,5	6, (4,					
Displacements under	seismic shear	loads	s C2											
Displacements for DLS	δ v,C2(DLS) [r	mm]		2,9					3,5			3,7		
Displacements for ULS	δv,c2(ULS) [r	mm]			6,8		·	9,3						

SIKLA Injection System VMZ	
Performance Displacements under shear loads, VMZ-A	Annex C9

Anchor size		V	MZ- IG	40 M6	50 M6	60 M8	75 M8	70 M10	80 M10	90 M12	105 M12	125 M12	115 M16	170 M16	170 M20
Installation facto	or	γinst	[-]						1	,0					
Steel failure															
Characteristic	Steel, zinc _l	plated	[kN]	15	16	19	29	3	5		67		52	125	10
resistance $N_{Rk,s}$	A4,	, HCR	[kN]	1	1	19	21	3	3		47		65	88	94
Partial factor		γMs	[-]	1,5											
Pull-out			· · · · · · · · · · · · · · · · · · ·												
Characteristic re	esistance (concre	te C20	/25)												
<u>uncracked</u>	50°C / 80°C 1)	N.	[kN]	9	17,4	22,9	32	28,8	35,2	42	52,9	68,8	60,7	109	10
concrete	72°C / 120°C ¹⁾	$N_{Rk,p}$	[kN]	6	9	16	16	16	25	25	35	50	40	75	95
cracked	50°C / 80° C 1)		[kN]	8,7	12,2	16	22,4	20,2	24,6	29,4	37,1	48,1	42,5	76,3	76
concrete	72°C / 120° C ¹⁾	N _{Rk,p}	[kN]	5	7,5	12	12	16	20	20	30	50	30	60	75
Splitting															
Splitting for sta	andard thickness	s of co	ncrete	•											
Standard thickn	ess of concrete h	າ _{min,1} ≥	[mm]	10	00	120	150	140	160	180	200	250	230	340	34
Case 1											l				
Characteristic re (concrete C20/2	IN	√0 _{Rk,sp}	[kN]	7,5	9	16	20	20	35,2	40	50	50	60,7	109	10
Case 2															
Characteristic e	dge distance	C _{cr,sp}	[mm]	3	h _{ef}	$2,5h_{\text{ef}}$	3,5h _{ef}	$2,5h_{ef}$	1,5h _{ef}		2 h _{ef}		1,5	h_{ef}	1,5
Splitting for mi	inimum thicknes	s of c	oncret	е											
Minimum thickn	ess of concrete h	າ _{min,2} ≥	[mm]	8	80	100	110	11	10	130	150	160	160	220	22
Case 1															
Characteristic re (concrete C20/2		√0 _{Rk,sp}	[kN]	7,5	2)	1	6	20	25	35	50	40	2)	75	10
Case 2															
Characteristic e	dge distance	C _{cr,sp}	[mm]	3h _{ef}	3,5h _{ef}	3h _{ef}	3,5h _{ef}	3,5h _{ef}	3h _{ef}	2,5h _{ef}	2,5h _{ef}	3h _{ef}	2,5h _{ef}	2,6h _{ef}	2,6
Increasing factor $N_{Rk,p}$ and $N^0_{Rk,sp}$ $N_{Rk,p} = \psi_c \cdot N_{Rk,p}$	(case 1)	Ψο	[-]	$\left(\frac{f_{ck}}{20}\right)^{0.5}$											
Concrete cone	failure														
Effective ancho	rage depth	h _{ef}	[mm]	40	50	60	75	70	80	90	105	125	115	170	17

SIKLA Injection System VMZ	
Performance Characteristic values for tension loads, VMZ-IG	Annex C10

Table C13.	Characteristic values for shear load.	VMZ-IC
Table C13:	Characiensiic values for shear load.	VIVIZ-IG

Anchor size	VM	IZ-IG	40 M6	50 M6	60 M8	75 M8	70 M10	80 M10	90 M12	105 M12	125 M12	115 M16		170 M20	
Installation factor	γinst	[-]						1	,0						
Steel failure without	lever arm														
Characteristic	Steel, zinc plated	[kN]	8,	0	9,5	15	1	8		34		26	63	54	
resistance $V^{0}_{Rk,s}$	A4, HCR	[kN]	5,	5	9,5	10	1	6		24		32	44	47	
Partial factor	γMs	[-]						1,	25						
Ductility factor	k ₇	[-]	1,0												
Steel failure with lev	er arm														
Characteristic	Steel, zinc plated	[kN]	1	2	30		6	0		105		212	266	519	
bending resistance M ⁰ _{Rk,s}	A4, HCR	[kN]	8,	8,5		21 42			74			187	187	365	
Partial factor	γMs	[-]						1,	25						
Concrete pry-out fai	lure														
Pry-out factor	k ₈	[-]						2	,0						
Concrete edge failure															
Effective length of and shear load	chor in I _f	[mm]	40	50	60	75	70	80	90	105	125	115	170	170	
Outside diameter of a	nchor d _{nom}	[mm]	1	0	1	2	1	4		18		22	24	26	

Table C14: Displacements under tension loads, VMZ-IG

Anchor size	VMZ-IG		40 M6	50 M6	60 M8	75 M8	70 M10	80 M10	90 M12	105 M12	125 M12	115 M16		170 M20
Tension load in cracked concrete	Ν	[kN]	4,3	6,1	8,0	11,1	10,0	12,3	14,6	18,4	24,0	21,1	38,0	38,0
Displacement	δνο	[mm]	0,5		0,5	0,6	0,6		0,7			0,7	0,8	0,8
	δν∞	[mm]		1,3								1,1	1,3	1,3
Tension load in uncracked concrete	Ν	[kN]	4,3	8,5	11,1	15,6	14,1	17,2	20,5	25,9	33,0	29,6	53,3	53,3
Displacement	δνο	[mm]	0,2 0,4		0,4		0,4		0,6		0,5	0,6	0,6	
	δ _{N∞}	[mm]		1,3								1,1	1,3	1,3

Table C15: Displacements under shear loads, VMZ-IG

Anchor size	VI	MZ-IG	40 M6	50 M6	60 M8	75 M8	70 M10	80 M10	90 M12	105 M12	125 M12	115 M16	170 M 16	170 M20
Shear load Steel, zinc plated	V	[kN]	4,6		5,4	8,4	10,1		19,3		14,8	35,8	30,7	
Displacement	δνο	[mm]	0,4		0,5	0,4	0,5		1,2		0,8	1,9	1,2	
	δν∞	[mm]	0,7		0,8	0,7	0,8		1,9		1,2	2,8	1,9	
Shear load Stainless steel A4 / HCR	٧	[kN]	3,2		5,4	5,9	9,3		13,5		18,5	25,2	26,9	
Displacement	δ_{V0}	[mm]	0,3		0,5	0,3	0,5		0,9		1,0	1,4	1,1	
	δν∞	[mm]	0,4		0,7	0,5	0,7		1,4		1,5	2,1	1,6	

SIKLA Injection System VMZ

Performance

Characteristic values for shear load VMZ-IG, Displacements VMZ-IG

Annex C11